

reprox

Github page: https://github.com/XENONnT/reprox

Content

Setup and basics

	Setting up reprox

	Reprocessing on dali
	Logic

	Running step by step

	Advanced usage
	Changing the defaults of processing

	Use custom config

	Using reprox from your jupyter notebook

	Processing NV data

	Using tagged versions

Reference

	reprox package

Indices and tables

	Index

	Module Index

	Search Page

Setting up reprox

One can either use a frozen installation:

Install using:
pip install reprox

or, as recommended, use the developer installation:

git clone git@github.com:XENONnT/reprox.git
pip install -e reprox

Reprocessing on dali

Process data in so far available on dali with the current container

Logic

There are several (sequential) steps with (associated scripts):

	Step 1. Find runs to process (reprox-find-data)

	Step 2. Process the runs that were found (reprox-start-jobs)

	Step 3. Move the data that was processed to the desired folder (reprox-move-folders)

One can also run these three steps from one file (reprox-reprocess), which runs all three in
order.

The best place to start is by going over these files and do
reprox-find-data --help to see which options there are. Most are discussed below.

Running step by step

Below, we show how these three steps are done. This can also be done in one
command skip to single command. [https://reprox.readthedocs.io/en/latest/reference/examples.html#run-entire-workflow-steps-1-3-in-a-single-command]

Step 0 - Activation and test installation

You only have to do it once, to prevent confusion we will go over it step by step.

First, activate a container (NB! the singularity containers do not work
as they cannot communicate with the job submission of dali).

source /cvmfs/xenon.opensciencegrid.org/releases/nT/development/setup.sh
git clone git@github.com:XENONnT/reprox.git
pip install -e reprox --user

test that the installation is complete and successful

reprox-find-data --help

Trouble-shooting

Now, the commands above may sometimes not work as expected due to permission errors on the
containers. If there is an error, you could see reprox-find-data: command not found.
If this is the case, simply navigate to the bin folder of reprox and
run the commands as below:

cd repox/bin
python reprox-find-data --help

The other reprox scripts are similarly located in the bin folder. If you had
to change this once, you have to do python <script> for all the scripts
listed below.

Step 1 - finding data to (re)process on dali

Now we have to know which data to process, this can be done with the following
command. Determine which data to process:

reprox-find-data \
 --package cutax \
 --context xenonnt_v6
 --target event_info event_pattern_fit cuts_basic \
 --cmt-version global_v6

The --package and --context arguments specify where to load the context
from (straxen/cutax) and which context to use. In this example, we use xenonnt_v6.
The --target argument specifies which datatypes to produce. This can be a
list as in the example above. We will check if the datatypes can be produced for this given context.
Since some context may use a global CMT version that is only valid for a range of runs,
the --cmt-version is specified separately and tells the script to only process runs
that are valid in this cmt_version. This can be disabled using --cmt-version False
(for example, you know that the CMT version is always valid for the datatypes you requested).

This takes a while (+/- 30 minutes) and writes a file
called /dali/lgrandi/xenonnt/data_management_reprocessing/to_do_runs.csv (depending on your ini
file). This file has a list of runs that you can process given the options as above.

Step 2 - starting the jobs to process the data

After producing /dali/lgrandi/xenonnt/data_management_reprocessing/to_do_runs.csv, we need to
submit the jobs to process the data. Most of the arguments are the same as above,
we now also specify some self-explanatory arguments for the jobs to be submitted.

reprox-start-jobs \
 --package cutax \
 --context xenonnt_v6 \
 --target event_info event_pattern_fit cuts_basic \
 --ram 12000 \
 --cpu 2

Step 3 - move to the production folder

Now, hopefully most of the data has been processed successfully, we can now move it to the
production folder. This includes a check to see if the data was processed successfully so
even if a few jobs failed (or are still running), you can safely run this command below.

reprox-move-folders

Run entire workflow (steps 1-3 in a single command)

You can also do all the above in a single command, using the same arguments (see above for explanation of each.).

reprox-reprocess \
 --package cutax \
 --context xenonnt_v6 \
 --target event_info event_pattern_fit cuts_basic \
 --cmt-version global_v6 \
 --ram 12000 \
 --cpu 2 \
 --move-after-workflow # To move the data into the production folder

Advanced usage

Below are several more advanced use cases.

Changing the defaults of processing

You might want to play with the config file that says how many resources one uses by default.
The reprocessing.ini [https://github.com/XENONnT/reprox/blob/master/reprox/reprocessing.ini]
file. You can either change the source code of this file, or you can overwrite it as follows:

git clone git@github.com:XENONnT/reprox.git
cp reprox/reprox/reprocessing.ini my_reprocessing_config.ini

Edit my_reprocessing_config.ini. For example using vim:
vi my_reprocessing_config.ini

overwrite the file used using an environment variable
export REPROX_CONFIG=$(pwd)/my_reprocessing_config.ini

You will see that your defaults have been changed (e.g. do reprox-reprocess --help) reflecting the
changes you made in the .ini file.

Use custom config

You might want to process some data with slightly different settings, this can be done using
the--context_kwargs argument as follows
(please don’t move it into the production folder unless you know what you are doing):

reprox-reprocess \
 --package cutax \
 --context xenonnt_v6 \
 --target event_info event_pattern_fit cuts_basic \
 --cmt-version global_v6 \
 --ram 12000 \
 --cpu 2
 --context-kwargs '{"s1_min_coincidence": 2, "s2_min_pmts": 10}'

Using reprox from your jupyter notebook

You can also run the commands from above in a notebook or python script.

from reprox import find_data, submit_jobs, validate_run

targets = 'event_info event_pattern_fit cuts_basic'.split()

First determine which data to process
find_data.find_data(
 targets=targets,
 exclude_from_invalid_cmt_version='global_v6'
)
Now start running the jobs
submit_jobs.submit_jobs(targets=targets)

Finally move the jobs to the production folder
validate_run.move_all()

Processing NV data

By default, the package assumes that only linked-mode or TPC runs are processed, if you want to
instead process NV data you need to tell the scripts to also take into account the NV detector:

reprox-reprocess \
 --package cutax \
 --context xenonnt_v6 \
 --target events_nv \
 --detectors neutron_veto muon_veto
 --ram 12000 \
 --cpu 2
 --cmt-version False

Using tagged versions

One might want to run with a different tag as so

MY_TAG=2021.12.2
source /cvmfs/xenon.opensciencegrid.org/releases/nT/$MY_TAG/setup.sh
reprox-reprocess \
 --package cutax \
 --context xenonnt_v5 \
 --targets event_info \
 --cmt-version global_v5 \
 --ram 24000 \
 --cpu 2 \
 --move-after-workflow \
 --tag $MY_TAG

reprox package

Submodules

reprox.core module

Shared common methods for reprocessing, not useful in itself

	
reprox.core.check_user_is_admin(admin_group='xenon1t-admins')

	Check that the user is an xenon1t-admin

	
reprox.core.format_context_kwargs(minimum_run_number, maximum_run_number)

	

	
reprox.core.get_context(package='cutax', context='xenonnt_v7', output_folder='/home/docs/checkouts/readthedocs.org/user_builds/reprox/checkouts/latest/test_folder/strax_data', config_kwargs: Union [https://docs.python.org/3/library/typing.html#typing.Union][None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, minimum_run_number=17900, maximum_run_number=None)

	

	
reprox.core.log_versions()

	Log versions (nested import makes the arg parsing quick)

	
reprox.core.parse_args(description='nton reprocessing on dali', include_find_args=False, include_processing_args=False, include_workflow_args=False)

	Parse arguments to return to the user

reprox.find_runs module

	
reprox.find_runs.determine_data_to_reprocess(st: strax.context.Context, targets: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], list [https://docs.python.org/3/library/stdtypes.html#list]] = (), special_modes: Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]] = ('LED', 'noise', 'pmtap', 'pmtgain', 'exttrig'), keep_detectors: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], list [https://docs.python.org/3/library/stdtypes.html#list]] = ('tpc',), exclude_from_invalid_cmt: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = 'global_v7', _max_workers: int [https://docs.python.org/3/library/functions.html#int] = 50, ignore_runs=()) → pandas.core.frame.DataFrame

	
	Find data that we can process. This data needs to:
	
	(optional) be within the validity of a specified CMT version.
Disable with exclude_from_invalid_cmt=False

	Don’t be some calibration mode (led/noise etc. data)

	Not be available already (why would you want to reprocess that?)

	Have the data which we need in order to compute this target.

	Parameters

	
	st – Context to run with

	targets – Data types to produce

	special_modes – list of modes to exclude to determine here
(usually you can do this trivially, so no need to use this
function)

	exclude_from_invalid_cmt – A CMT version whereof we will check
that the CMT version extends to those ranges where we would like
to reprocess.

	_max_workers – Max workers for finding the stored data

	Returns

	

	
reprox.find_runs.find_data(targets: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]], exclude_from_invalid_cmt_version: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]] = 'global_v7', context_kwargs: Union [https://docs.python.org/3/library/typing.html#typing.Union][None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, keep_detectors: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], tuple [https://docs.python.org/3/library/stdtypes.html#tuple], list [https://docs.python.org/3/library/stdtypes.html#list]] = ['tpc'], ignore_runs=()) → None [https://docs.python.org/3/library/constants.html#None]

	Determine which data to process, see determine_data_to_reprocess
:param targets: List of targets to process
:param exclude_from_invalid_cmt_version: A CMT version (optional) to

exclude runs that lie outside it’s validity from

	Parameters

	context_kwargs – Any context kwargs

	Returns

	

reprox.process_job module

	
class reprox.process_job.ProcessingJob(run_id, targets, submit_kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for starting jobs and keeping an eye on their status

	
get_run_job_state(read_last=10, ignore_patterns=['tensorflow', 'UserWarning', 'module compiled against']) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the state of the current job

	
submit(**extra_kwargs)

	Submit the job to be run

	
submit_message = None

	

reprox.submit_jobs module

	
reprox.submit_jobs.can_submit_more_jobs(nmax='100')

	

	
reprox.submit_jobs.cycle_queue(queues=('xenon1t', 'dali', 'broadwl'))

	

	
reprox.submit_jobs.get_rundoc(run_id)

	

	
reprox.submit_jobs.n_jobs_running()

	

	
reprox.submit_jobs.submit_jobs(submit_kwargs: Union [https://docs.python.org/3/library/typing.html#typing.Union][None [https://docs.python.org/3/library/constants.html#None], dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, targets: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]] = ('event_info', 'event_pattern_fit'), break_if_n_jobs_left_running: Union [https://docs.python.org/3/library/typing.html#typing.Union][None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int]] = None, clear_logs: bool [https://docs.python.org/3/library/functions.html#bool] = False, sleep_s_when_queue_full: int [https://docs.python.org/3/library/functions.html#int] = 60, submit_only: Union [https://docs.python.org/3/library/typing.html#typing.Union][None [https://docs.python.org/3/library/constants.html#None], int [https://docs.python.org/3/library/functions.html#int]] = None, known_partitions: Union [https://docs.python.org/3/library/typing.html#typing.Union][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], list [https://docs.python.org/3/library/stdtypes.html#list]] = ['dali', 'xenon1t']) → List [https://docs.python.org/3/library/typing.html#typing.List][reprox.process_job.ProcessingJob]

	Submit jobs to the queue for the given options

	Parameters

	
	submit_kwargs – dict of options that are passed on to the job
submission

	targets – List of datatypes to produce

	break_if_n_jobs_left_running – threshold when to stop
reporting the status

	clear_logs – If true, clear the logs from previous jobs

	sleep_s_when_queue_full – sleep this many seconds if the

	submit_only – maximum number of jobs to submit

	known_partitions – list of partitions this user can submit to

	Returns

	a list of all the jobs that were submitted

reprox.validate_run module

Validate that the data can be loaded successfully and move the data to the production folder

	
class reprox.validate_run.RunValidation(path: str [https://docs.python.org/3/library/stdtypes.html#str], context: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][strax.context.Context] = None, mode: Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], reprox.validate_run.ValidationLevel] = ValidationLevel.SHALLOW)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Check that a directory (corresponding to a single datatype is

	
find_error() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Run several checks on a path to see if the processing was done correctly

	
class reprox.validate_run.ValidationLevel(value)

	Bases: enum.IntEnum [https://docs.python.org/3/library/enum.html#enum.IntEnum]

An enumeration.

	
DEEP = 1

	

	
SHALLOW = 0

	

	
reprox.validate_run.change_ownership(path, group)

	

	
reprox.validate_run.move_all(source_folder: str [https://docs.python.org/3/library/stdtypes.html#str] = '/home/docs/checkouts/readthedocs.org/user_builds/reprox/checkouts/latest/test_folder/strax_data', destination_folder: str [https://docs.python.org/3/library/stdtypes.html#str] = '/home/docs/checkouts/readthedocs.org/user_builds/reprox/checkouts/latest/test_folder', **move_kwargs)

	Move data from all folders in <source_folder> into the destination
folder and change the ownership of the folder

	Parameters

	
	source_folder – The main folder where to look for folders to move

	destination_folder – The folder where the <path> folder should be moved to

	move_kwargs – Takes the following kwargs:
:group: Name of the group that the permissions should be set to
:validation_level: the level at which to validate the data:

	ValidationLevel.SHALLOW: <0> for basic validation

	
	ValidationLevel.DEEP: <1> where we actually try loading the
	data with (requires a context)

	context

	for when the validation_level is set to ValidationLevel.DEEP

	Returns

	None

	
reprox.validate_run.move_folder(path: str [https://docs.python.org/3/library/stdtypes.html#str], destination_folder: str [https://docs.python.org/3/library/stdtypes.html#str] = '/home/docs/checkouts/readthedocs.org/user_builds/reprox/checkouts/latest/test_folder', group='xenon1t-admins', validation_level: int [https://docs.python.org/3/library/functions.html#int] = ValidationLevel.SHALLOW, context: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][strax.context.Context] = None) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Move data from path into the destination folder and change the ownership of the folder

	Parameters

	
	path – The folder to move

	destination_folder – The folder where the <path> folder should be moved to

	group – Name of the group that the permissions should be set to

	validation_level – the level at which to validate the data:
- ValidationLevel.SHALLOW: <0> for basic validation
- ValidationLevel.DEEP: <1> where we actually try loading the

data with (requires a context)

	context – for when the validation_level is set to ValidationLevel.DEEP

	Returns

	error string if an error occurred

	Raises

	FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] – when there is already a folder at the destination path

Module contents

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 reprox	

 	
 	
 reprox.core	

 	
 	
 reprox.find_runs	

 	
 	
 reprox.process_job	

 	
 	
 reprox.submit_jobs	

 	
 	
 reprox.validate_run	

Index

 C
 | D
 | F
 | G
 | L
 | M
 | N
 | P
 | R
 | S
 | V

C

 	
 	can_submit_more_jobs() (in module reprox.submit_jobs)

 	change_ownership() (in module reprox.validate_run)

 	
 	check_user_is_admin() (in module reprox.core)

 	cycle_queue() (in module reprox.submit_jobs)

D

 	
 	DEEP (reprox.validate_run.ValidationLevel attribute)

 	
 	determine_data_to_reprocess() (in module reprox.find_runs)

F

 	
 	find_data() (in module reprox.find_runs)

 	
 	find_error() (reprox.validate_run.RunValidation method)

 	format_context_kwargs() (in module reprox.core)

G

 	
 	get_context() (in module reprox.core)

 	
 	get_run_job_state() (reprox.process_job.ProcessingJob method)

 	get_rundoc() (in module reprox.submit_jobs)

L

 	
 	log_versions() (in module reprox.core)

M

 	
 	
 module

 	reprox

 	reprox.core

 	reprox.find_runs

 	reprox.process_job

 	reprox.submit_jobs

 	reprox.validate_run

 	
 	move_all() (in module reprox.validate_run)

 	move_folder() (in module reprox.validate_run)

N

 	
 	n_jobs_running() (in module reprox.submit_jobs)

P

 	
 	parse_args() (in module reprox.core)

 	
 	ProcessingJob (class in reprox.process_job)

R

 	
 	
 reprox

 	module

 	
 reprox.core

 	module

 	
 reprox.find_runs

 	module

 	
 	
 reprox.process_job

 	module

 	
 reprox.submit_jobs

 	module

 	
 reprox.validate_run

 	module

 	RunValidation (class in reprox.validate_run)

S

 	
 	SHALLOW (reprox.validate_run.ValidationLevel attribute)

 	submit() (reprox.process_job.ProcessingJob method)

 	
 	submit_jobs() (in module reprox.submit_jobs)

 	submit_message (reprox.process_job.ProcessingJob attribute)

V

 	
 	ValidationLevel (class in reprox.validate_run)

 nav.xhtml

 Table of Contents

 		
 reprox

 		
 Setting up reprox

 		
 Reprocessing on dali

 		
 Logic

 		
 Running step by step

 		
 Step 0 - Activation and test installation

 		
 Step 1 - finding data to (re)process on dali

 		
 Step 2 - starting the jobs to process the data

 		
 Step 3 - move to the production folder

 		
 Run entire workflow (steps 1-3 in a single command)

 		
 Advanced usage

 		
 Changing the defaults of processing

 		
 Use custom config

 		
 Using reprox from your jupyter notebook

 		
 Processing NV data

 		
 Using tagged versions

 		
 reprox package

 		
 Submodules

 		
 reprox.core module

 		
 reprox.find_runs module

 		
 reprox.process_job module

 		
 reprox.submit_jobs module

 		
 reprox.validate_run module

 		
 Module contents

_static/minus.png

_static/plus.png

_static/file.png

